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The multicomponent multiregion time dependent concentration diffusiondecay equation 
with sources is solved using a variational technique. A Lagrangian constraint is appended to 
the variational functional to ensure a physically correct solution to the balance equations. 
Spatial dependence of the diffusional coefficients is allowed between nodal values. Solutions 
have continuity of concentration and mass flux at material interfaces. The resultant time 
dependent nodal equations are solved by an exponential matrix method. Comparison with 
simple analytic solutions indicates that accurate physical results are obtained for few nodal 
values per material and that convergence is of order 0(h6). With minor modification the 
methodology is applicable to multigroup time dependent neutron diffusion, and two solutions 
are compared. ‘7) 1985 Academic Press, Inc. 

In this paper we investigate the variational solution of multicomponent concen- 
tration, C(r, t), time dependent diffusion governed by Fickian currents, 
J = - [D] grad C, a linear decay (or production) term, [L] C, and a source, S, 
which satisfies the balance equation 

aC(r, t)/at = div[D(r)] grad C(r, t) - [L(r)] C(r, t) + S(r, t). (1) 

In the case of binary diffusion of fission products, for example, the matrix dif- 
fusion coefficients, [D], can depend non-linearly on the temperature and concen- 
trations. In this analysis, however, we assume that a spatial representation of [D] 
is valid over a suitably chosen sub-domain during the time of interest. Additionally, 
we assume that the matrix [D] is in diagonal form, [D] = D,,,6,,, where 6,, is 
the Kroenecker delta, 1 d n, m 9 A4, where M is the number of components. Exten- 
sions to non-diagonal non-singular forms of [D] are straightforward. For fission 
product diffusion, [L] is usually the constant decay-production matrix. 
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Applications to multigroup neutron diffusion can also be obtained from Eq. (1) 
by modifing the time rate of change term to (l/u) X/at, where C is redefined to be 
the neutron flux, and u is the neutron velocity. The matrix [O] then becomes the 
multigroup neutron diffusion coefficient matrix, and the [L] matrix includes the 
macroscopic cross sections from removal, fission, and scattering [ 11, which could 
exhibit spatial dependence due to burnup. Thus, the matrix elements of [IO] and 
[L] are alowed to be spatially dependent. 

Finite difference (FD) solutions have been developed for Eq. (1) at a finite num- 
ber of spatial nodes [l-4]. Time step discretization methods may require small 
time steps in order to avoid instabilities and/or inaccuracies, especially if the 
resultant equations are tightly coupled or stiff [ 1,3]. Even with continuous time 
solutions, as used in the DASH FD program [2], the second order FD spatial 
representations may require a large number of carefully placed nodes to obtain 
accurate concentration gradient estimates near exterior boundaries, as is needed to 
predict the fission product mass flux from a fuel element [3,4]. 

Variational, Galerkin, or finite element methods can also be used to derive nodal 
representations of the diffusion equation [ 1,5,6]. With the success of variational 
methods for steady state neutron diffusion problems [7], extensions to time depcn- 
dent diffusion solutions are of interest. A variational functional is minimized with 
respect to trial function coefficients in order to obtain the time dependent nodal 
equations. The trial functions are chosen to satisfy certain conditions. In mul- 
timedia problems concentration and flux continuity are frequently appropriate 
interface boundary conditions. (Concentration jumps can occur for metallic fission 
products at gaps or material interfaces due to a non-linear concentration depen- 
dence of the thermodynamic potential, but that problem will be addressed 
elsewhere.) A unique polynomial trial function can be determined by applying con- 
tinuity of C and J at material interfaces: cubic hermite polynomial shape functions 
result. Mixed homogeneous or inhomogeneous exterior boundary conditions are 
imposed by lagrangian constraints. 

After minimization of the variational functional with respect to the nodal com- 
ponents, the resultant time dependent matrix initial value equations are solved 
using exponential matrix techniques [S]. The matrix solution method has analytic 
accuracy in the time variable and is well suited to solve the stiff equations 
sometimes encountered. The continuous spatial solutions between nodes are 
evaluated by interpolation of the trial function. 

Solutions of the time dependent nodal equations will not necessarily satisfy the 
balance equation, Eq. (l), in a spatial integral sense unless a Lagrange multiplier 
term is appended to the variational functional, as was observed in steady state 
solutions [7]. Without the constraint, for a single isotope, this method is equivalent 
to the Galerkin method. 

The results of imposing the conservation constraint are compared with analytic 
solutions. Without the constraint, in addition to the solutions not satisfying the 
governing balance equation in an integral sense at a particular time, late time 
solutions (essentially) near steady state yield a lictious non-decreasing volume 
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integrated time rate of change, instead of a value approaching zero, as should be 
obtained. On the other hand, with the constraint, the conservation variational 
method provides an accurate and physically correct solution with significantly fewer 
nodes than FD methods. The FD solutions are conservative and evaluated by the 
same matrix operator method [2, 81. 

Four simple concentration diffusion-decay problems are addressed in one dimen- 
sional geometries, for one and two-component and one- and two-medium 
problems, including fission product diffusion in an HTR pebble bed fuel element. 
Reasonably accurate time dependent concentration solutions are obtained even for 
very few nodes/material (2 nodes = 3-5%; 3 nodes = O.llO.3%; 4 nodes = 
O.Ol-0.05%). The maximum errors in the system are quoted relative to analytical 
solutions. Balance is exact and calculated leakages are accurate. The apparent 
spatial convergence rate of these simple problems is 0(h6) in cell size h. We also 
compare two late time neutron flux diffusion solutions with critical eigenvalue 
steady state results. This computation involves completely multicomponent 
(multigroup) multiregion equations. 

MODEL DEVELOPMENT OF THE VARIATIONAL FUNCTIONAL 

The time dependent diffusion equation can be solved by a variational method if 
there is a functional, Z(w), such that C(r, t), which satisfies Eq. (l), is the necessary 
condition for the functional to be an extremum [S]. The functional in one-dimen- 
sional geomtries for which w(r, t) obeys the diffusion equation is 

I(w,~+)=(w+,Lh~/at-div[D]gradw+[L]w-S)-(S+,W) Pa) 

= (w+, awlat> + (aw+jar, CD] aw/ar> 

+ (w+, [L] w) - (wf, S) - (s+, w) (2b) 

and the trial function w and its adjoint w + are real valued functions on [a, 61 with 
w, w+, and their derivatives belonging to L’[a, 61. We define 

CA g> = k(c) Jo’ I,” f(r) g(r) rc dr 4 (3) 

where the coefficient k(c) = 1, 27r, and 471 for c = 0, 1, and 2 in slab, cylindrical, or 
spherical geometry, respectively. Applying the Euler-Lagrange equation for Eq. (2) 
yields Eq. (1). The exterior boundary conditions of the original problem are appen- 
ded to Eq. (2) as a constraint. 

In developing numerical solutions the interval [a, b] is divided into Z mesh cells, 
each of which can have different material properties. The spatial continuity of w 
and (the current) J(r) = - [D(r)] aw(r)/ar (and adjoints) at internal material inter- 
faces is assumed. In each cell there are four continuity conditions (two at each cell 
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edge). Assuming a polynomial trial function a cubic representation can be found 
which exactly satisfies the continuity conditions. We impose the internal continuity 
conditions 

w(yi- I= w(rl + 1, (4) 

-Jip = [D(r,-)] aw(r,_)/& = [D(ri+)] dw(r,+)/dr = -Ji+ (5) 

where the (&- ) appended to the nodal coordinate, ri, indicates evaluation from the 
left (- ) or right (+ ). The trial function which interpolates the parameters and 
satisfies the continuity conditions is [6] 

hi(r, t)=Cis,(l-p)+Ci+Is,(p) 

- KC~(ri+)l~lJ~~~~~~~~+~~C~~~~+~-~l~l Ji+lSl(Ph (6) 

where we have defined the variables 

K, = ri+ 1 - ri, p=(r-r,)lK,, OQpGl, (7) 

and the hermite polynomials 

&) =p2(3 -2P), S,(P) =p2u -PI. (8) 

The concentration, C;(t), and current, Ji( t), are real interpolating parameters 
defined at ri, 1 < i < Z. The corresponding adjoint trial function, h+(r, t), has a 
similar form. 

A set of time dependent matrix equations is obtained in terms of Ci(t) and J,(r) 
by substituting Eq. (6), and its adjoint, into the functional and taking the variation 
of the result with respect to C,? and J+. 

If steady state solutions exist for the time dependent problem, the late time 
solutions should approach the steady state solution. For steady state multigroup 
neutron diffusion solutions from such a variational formulation it was observed that 
the equations would not conserve (balance) over a mesh cell or in the system [7]. 
However, conservation is obtained by construction for proper FD representations 
[3,4]. Since the diffusion equation is a balance relation, particles (the diffusing 
field) must be conserved. Therefore, in order to obtain cell-wise conservation, a 
Lagrange multiplier term is appended to the functional, Z(w, w + ), which subjects 
solutions to the constraint of conservation. The appropriate time dependent conser- 
vation equation is obtained by substituting the trial function into the diffusion 
equation and integrating over the cell, with the result 

(l,ah,lat)=AiJi-Ai+,Ji+I-(l, CLi(P)lhAp)>+ (‘,S~(P)>. (9) 

Here Ai is the surface area normal to node i, and A iJj - Ai+ r Ji+ , results from 
Gauss’ divergence theorem applied to the leakage term in Eq. (1). 

Substituting the trial functions hi@ t) and h:(p, t) into Eq. (2) and defining 
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E+(t) and Ei(t) as the Lagrange multipliers for imposing cell-wise conservation 
constraint, the conservational functional becomes 

Z,(w, w+)=iz;(w, wf), (loa) 

where 

‘A’+‘, W+)= (h’(P), ah,(P)l’t> + (l/Kf)(ah:(P)l~P, [Dip)] ahi(p)/ap> 
+ (h?(P), [LAP)] hi(P)) - (h.?(P), S;(P)) 

+ (ET > ahdP)lat+ CLAP)1 hi(p)-Sip)) 
+ E’(-AiJi+A,+,Ji+I) 

+(Ei, -ah+(P)/at+ [Li(p)l+h+(p)-S+(p)) 

+Ej(-A;J’ +Ai+lJ,+,,) (lob) 

and 

<L(P), g,(P)> =‘(c) J”oTjolf’(p) gi(p)(Kjp + ~0 dp dt. (1Oc) 

Minimizing the functional I, with respect to C,? , J,+ , ET, Ci, Ji, and Ei results in 
time dependent matrix equations for the nodal components that satisfy the con- 
tinuity of concentration and current boundary conditions at material interfaces, and 
the conservational relationship. 

For the exterior boundary conditions we impose an additional constraint at the 
left and right hand boundaries which allows for the boundary condition [ 1 ] 

CalI W, t) + Cd WA f)l% = a3, 
and (11) 

C&l C(1, f) + CM WL fY%= b,, 

where [ai] and [bi], i= 1, 2, are diagonal matrices, and a3 and b, are vector con- 
stants. The exterior boundary conditions are treated in the matrix solutions below 
by imposing the equations 

Wf(Ca,l c,(t) + CazlCDI(O)I -’ Jl(t)) =O> 
and (12) 

W(Chl C,+l(t)+ CMC~,+IU)I--‘J,+~(~))=~~ 

at the boundaries, where the initial condition vector is set to a3 or b, on the left and 
right boundaries, respectively. For the problems addressed in this paper, we use 
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a3 = b3 = 0 (homogeneous), [a,] = 0 (Neumann), and [bJ = 0 (Dirichlet) 
corresponding to symmetry (zero current) at the origin and zero concentration at 
the outside ‘boundary. 

TIME DEPENDENT MATRIX SOLUTIONS 

The matrix equations resulting from the variational formulation are 

[T] dX/dt= [A] X+S, (13) 

where [T] and [A] are symmetric block tridiagonal matrices, given in the Appen- 
dix. The solution vector X = [X, ,..., X,, , ] ’ for Z cells (I+ 1 nodes), where 
x~ = Cc&I Ji,1 9 Ei,l 1...3 CLM, Ji,M, E+,]’ is of length 3M, contains components of the 
nodal concentration Ci,, , current, Ji,m, and (conservation) Lagrange multiplier, 
Ei,,,*for node i, and component m, 16 m < M. For nonconservational calculations, 
the components Ei,, are omitted. In FD formulations, only the components Ci,, 
occur, the matrix [T] is diagonal, and [A] is tridiagonal [ 1, 3,4]. 

Since the matrix [T] is nonsingular, Eq. (13) is equivalent to 

dX/dt= [Tp’[z4] X+ CT]-‘S. (14) 

If the matrix [B] = [T] ~ 1 [A] is constant over a time interval (0, t), Eq. (14) can 
be solved using the methods of ASH[8], an analytic matrix technique based on the 
Volterra calculus [9]. Further, if the source is described by S(t’) = S, + t’s, on 
(0, t), with S, and S, constant, then the solution is 

X(t)=ec”“X(0)+tD([B] t)[Tp’S,+t2Z([B] t)[T]-‘S,, (15) 

where the exponential matrix operator is 

eCslr = f ([B] t)“/n!, 
II=0 

and the matrix operators D([B] t) and Z([B] t) are 

(16) 

and 

WCBI t)= (CBI t)-‘( Pl’-I)= f ([B] t)“/(n+ l)!, 
n=O 

(17) 

Z([B] t)=([B] t)-‘(D([B] t)-I)= 2 ([B] t)“/(n+2)!, 
n=O 

forms which exist even if the matrix [B] is singular. 
Direct evaluation of the matrices e (CB1’) D([B] t), and Z([Z?] t) can lead to 

numerical difficulties if the magnitude of the eigenvalues of [B] t are greater than 
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unity. The eigenvalues are scaled to be less than unity by forming H= 2-P[Bt], 
with the integer p determined such that the norm llHl/ = $, which is satisfied 
provided 

2ln2 (18) 

The numerical evaluation of e tH1, D( [ H] ), and Z( [ H] ) is performed using a 
finite number of terms, N, of the corresponding series representation, where N is 
choosen dynamically such that the remainder terms have norm less than a some 
prescribed error. Knowing e tH1 D( [HI), and Z( [HI), the values of eCcB1’), 
D( [B] t), and Z( [B] t) are obiained by scaling the matrix functions of [H] 
upwards by powers of 2, until [B] t = 2P[H], with the recursion relations 

and 

D(2P+1[H])=D(2P[H])[Z+4(2P[H])D(2P[H])], 

(19) 

Z(2P+‘[H])=+Z(2P[H])+$[D(2p[H])]2, 

which can be proved by induction arguments [S]. 
The SPLASH program was developed to solve this time dependent multicom- 

ponent multiregion one-dimensional diffusion decay problem [ 10, 111. 

RESULTS 

Detailed comparisons with analytical and finite difference solutions have been 
made. In one dimension, typical one or two component, and one or two media 
problems are evaluated from initial to (essentially) steady state rapidly with few 
notes/material and reasonable accuracy compared to analytical solutions (2 nodes 
= 3-5%; 3 nodes = O.lM.3%; 4 nodes = O.OlM.O3%). Balance is exact; leakages are 
quite accurate. The errors quoted are maximum for concentration or current in the 
system. 

Six simple problems are examined. First we consider a single region slab contain- 
ing two isotopes. The second isotope is stable and has a source term resulting from 

TABLE I 

One-Region, Two-Isotope Slab Problem 

Isotope Diffusion 
ID coefficient 
No. (cm2/sec) 

1 1.0 
2 1.0 

Decay 
constant 
(set-‘) 

4.0 
0.0 

Initial 
concentration 
(atoms/cm3) 

0.0 
0.0 

Source 
(atoms/ 
cm’/sec) 

4.0 
L, Cl 
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FIG. 1. Concentration in a one-region slab with diffusion and decay 

the decay of the first isotope, as described in Table I. These parameters were 
choosen for comparison with other investigations [3, 121. If we examine only the 
solution for the first isotope, then the analytic solution is readily evaluated for a 
homogeneous Dirichlet boundary condition [3, 131. The two-node solutions (a 
node at the center and the outside) at t = 0.25, 0.50, and 10.0 s are compared in 
Fig. 1. The spatial error relative to the analytic solution at t = 10 s, the time of 
maximum error, is compared in Fig. 2 for 2, 3, and 4 nodes. The approximate 
maximum errors with 2, 3, and 4 nodes are 2.5, 0.3, and O.Ol%, respectively. 

The two-isotope two-node solution is illustrated in Fig. 3 at t = 10 sec. The per- 
centage errors compared to the analytical solutions are shown in Fig. 4. The 
maximum error occurs between the nodal values, and, as the number of nodes 
increases, the error approaches zero, typically as 0(h6). 

The viability of the method to correctly determine integral quantities was 
examined. A comparison of the computed and analytic values of the volume 



MULTICOMPONENT TIME DEPENDENT DIFFUSION 

2.0 
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FIG. 2. Error versus position in the one-region dab problem. 

integral of the time rate of change of the concentration is given in Table II. The 
analytic, conservative, and non-conservative formulations are compared in the two- 
node approximation. Compared to the analytic solution the conservation results are 
accurate over several orders of magnitude in time, while the non-conservation 
results are not. For all cells, this integral must vanish identically for steady state 
solutions. 

If the conservation formulation is not utilized, a false prediction of a time rate of 
change of the volume integral of the concentration is made in the steady state 
domain. Of course, the errors made by the non-conservative solution diminish as 
the number of nodes is increased, but then the basic advantage of a variational 
(Galerkin) method is lost, namely, obtaining an accurate answer rapidly with few 
nodes. Consequently, the conservation constraint is necessary and preferred. 

Next, we consider two simple spherical pure diffusion problems. Figure 5 
illustrates a pebble bed reactor spherical fuel ball model, defined in Table III, which 
is used to compare the SPLASH and DASH computations. First, a one-region 
sphere is considered with a = 3 cm, D = 1.06 x 10e6 cm2/sec, and S= 
1015 atoms/cm3-sec. This corresponds to the two-region problem treated below with 
the first-region properties throughout. Figure 6 illustrates the comparison of the 3- 
node SPLASH and the ONESPHERE [3] analytic solutions. The 3-node SPLASH 
solution is within 3% of the analytic solution for all times. Analytic accuracy is 
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SPLASH ----- 
@-nodes) 

FIG. 3. Two-isotope diffusion with decay in slab geometry. 

obtained by 2-node SPLASH solutions at 300 days. For 5 or more nodes, the 
solutions are graphically indistinguishable. The percentage errors for 3 and 5 nodes 
are shown in Fig. 7 at t = 3 days, the time of maximum error. The DASH FD 
solutions, also performed with the exponential matrix method for the time 
solutions, had a 1% maximum error in concentration at 3 days and a 1.6% error in 
the current at the outside boundary using 16 carefully positioned mesh cells [3]. 
SPLASH used 14 equations for 5 nodes and had a maximum error of 0.2%. The 
SPLASH solution is valid throughout the cell, while the DASH solution is only 
defined as an averaged value at a finite number of points. Thus, for a similar com- 
puting investment, SPLASH will yields a much more accurate solution than the 
corresponding FD method, all else being equal. SPLASH additionally offers the 
possibility of analytic accuracy when the analytic solution is spatially cubic or lower 
order, due to the trial functions employed. 

Second, the SPLASH and TWOSPHERE [3] analytic solution of the two-region 
problem are compared in Fig. 8. For the 3-node numerical solution, one node was 
placed at the center, one node at the boundary between the two regions, and one 
node at the outside boundary. Figure 9 illustrates the percentage error compared 
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FIG. 4. Error versus positon in the two-isotope slab diffusion problem. 

TABLE II 

Comparison of s dC/dt dV with and without Conservation 

Time 
(set) 

0.25 
0.375 
0.50 
1.00 

10.00 
100.0 

Analytic 

0.6437 
0.2868 
0.1278 
0.00504 
0.0 
0.0 

Conservation Non-conservation 
(2 nodes) (2 nodes) 

0.6369 0.1367 
0.2835 0.3754 
0.1263 0.2147 
0.00498 0.0907 
0.0 0.08561 
0.0 0.08561 
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FIG. 5. Pebble bed reactor spherical fuel ball. 

with the analytic solution for 3, 5, and 7 nodes at t = 3 days, which was the time of 
maximum error. The maximum spatial errors for 3, 5, and 7 nodes are 5.0%, 
0.25%, and 0.08%, respectively. The 5% error with 3 nodes is reduced significantly 
by the placement of one additional node in the inside region. 

Table IV summarizes the maximum errors compared with the analytical solution 
in concentration and flux (at the outside surface) with 3 nodes at various times. The 
3-nodes SPLASH flux error is comparable to DASH FD results at t = 3 days using 
18 carefully adjusted cells, and orders of magnitude better for longer times. This 
improved accuracy with only one-third the total number of equations is important 
in numerical estimation of the fission products leaking from such fuel elements 131. 

As a more complete test of the SPLASH solution method, the two-region two- 
group time dependent neutron diffusion problem in slab and spherical geometry 
was evaluated at late times and the neutron fluxes were compared to critical eigen- 
value solutions obtained analytically and from a steady state conservational 
variational method [7]. For this purpose we supply an initial flux distribution, and 
evaluate the solution at a late time. These two group problems produce completely 
coupled multicomponent multiregion equations [ 14, 151. The nuclear parameters 
given in Table V produce thermal flux peaking in the reflector near the core inter- 
face. 

TABLE III 

Two-Region Spherical DitTusion Parameters 

Inner radius (region 1) a = 2.5 cm 
Outer radius (region 2) h = 3.0 cm 

Diffusion coefficients 
region 1 D, = 1.02 x lo-6 cm2/sec 
region 2 D, = 4.34 x lo-’ cm2/sec 

Sources 
region 1 S1 = lOI atoms/cm3-set 
region 2 S, = 1Ol5 atoms/cm3-set 

Zero boundary condition C(b, t) = 0.0 
Zero initial condition C(r, 0) = 0.0 
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FIG. 6. Concentration in a one-region sphere. 

First, for the slab reactor with a 25cm reflector, the analytical critical half- 
thickness is 7.987788 cm. The SPLASH 5-node neutron flux steady state solution is 
compared with the analytic solution determined by the critical determinant method 
[14] in Fig. 10, where the thermal flux peaking is exhibited with 5 nodes. The 
maximum fast flux error was 0.25% in the core and 5.2% in the reflector, while the 
maximum thermal flux error was 1.7% in the core and 5% in the reflector, which is 
due to the rather large (12.5 cm) spacing in the reflector. Comparison of SPLASH 
with the steady state conservational variational code, TRIO [7], indicates that 
both calculations yield comparable fluxes with the same input and node placement. 
An 11-node steady state variational solution to this problem is an order of 
magnitude more accurate than DASH with 50-mesh cells. For the critical slab the 
DASH maximum errors with 50-mesh cells are 0.33 and 0.60% for the fast and 
thermal fluxes, respectively. 

Second, for the spherical reactor with a 25-cm reflector, the analytical critical 
radius is 21.91046 cm. The SPLASH 5-node neutron flux steady state solution is 
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FIG. 7. Error versus position in the one-region sphere. 

3.0 

compared with the analytic solution in Fig. 11. The thermal peaking is weak in a 
critical sphere and SPLASH could not follow it completely with just 5 nodes when 
the mesh cells are 12.5 cm. The maximum fast flux error was 1.3% in the core and 
3.5% in the reflector, while the maximum thermal flux error was 4.6% in the core 
and 16.6% in the reflector. The maximum error occurs in the vicinity of the thermal 
peaking in the reflector where the coarse 12.5cm spacing precluded tine resolution 
of the peaking phenomena. An 11-node steady state solution to this problem is an 
order of magnitude more accurate than DASH with 50-mesh cells. For the critical 
sphere, the DASH maximum errors with 50-mesh cells are 0.74 and 1.25% for the 
fast and thermal fluxes, respectively. 

These neutronic results indicate that the SPLASH conservation variational 
method yields accurate results with just a few nodes, that the thermal peaking 
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FIG. 8. Concentration in a two-region sphere. 

phenomena can be predicted with as few as 5 nodes, and that better accuracy is 
obtained with approximately half the total number equations used by FD methods. 
In these comparisons the ASH solution method was used for both the variational 
and FD time dependent solutions. 

When the SPLASH program is run on the CRAY of CDC-205 computers, with 
only minor subroutine modifications, 98% vectorization is obtained. The optimized 
running time of the exponential matrix method increases proportional to .* ‘, where 
n is the total number of equations. This suggests that a speed improvement factor of 
16 over the DASH FD method might be obtained by the conservation variational 
method in SPLASH. We note that although the SPLASH matrix size for specified 
accuracy is smaller than the DASH FD matrix, the SPLASH submatrices are com- 
pletely filled, whereas the DASH submatrices are tridiagonal. The increased 
SPLASH accuracy for sparse node placement is probably due to the additional 
coupling in the matrix elements, but this coupling feature does not affect the 
exponential matrix computation time. Additionally, even for a solution with 300 
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FIG. 9. Error versus position in the two-region sphere. 

TABLE IV 

Two-Region Sphere Maximum Error Comparisons: 3 Nodes 

Time Concentration 
(days) (% Error) 

14 2.019 
3.0 5.042” 

30.0 0.183 
300.0 4.8 x lo-* 

Flux@ = b, I) 
(% Error) 

1.072 
1.043b 
0.021 

3.0 x 1o-7 

“Error with DASH finite. difference code using 18 carefully adjusted mesh 
cells = 3.4% at 3 days[3]. 

h Error with DASH finite difference code using 18 carefully adjusted mesh 
cells = 2.7% at 3 days[3]. 
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TABLE V 

Nuclear Data for Two-Group Criticality Problem 

Parameter Group 1 Group 2 

Core Reflector Core Reflector 

Diffusion coeflicient [cm] 1.13 1.13 0.16 0.16 
Removal cross section [cm] ’ 0.0419 0.0419 0.06 0.0197 

Fission cross section [cm ‘1 0 0 0.03415 0.0 
nu 0 0 2.44 0.0 

L-2 0.0412 0.0412 
2-1 yx/2 0.0 

AwJ.rex 

SPLASX ------ 

(5”odes) 

FIG. 11. Two-group flux provile in a critical reflected sphere reactor. 
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FIG. 10. Two-group flux profile in a critical reflected slab reactor. 

nodes at 50 days, extending the solution to 5 x 10” days (a large, but valid steady 
state estimate) resulted in less than a factor 2 increases CPU time, which illustrates 
the economic advantages of scaling and recursion by powers of 2. 

CONCLUSIONS 

For the same accuracy level, the SPLASH conservation variational method 
achieves an accurate solution with significantly less computing effort than finite dif- 
ference methods. 

One- and two-region, one- and two-isotope solutions with decay and pure dif- 
fusion were compared with analytical solutions in slab and spherical geometries. As 
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the number of nodes is increased, the maximum error (which occurs between nodal 
points) apparently decreases as O(h6) for the problems addressed. This improved 
convergence rate occurs possibly because of the integral conservation constraints 
imposed on the solution. Late time SPLASH solutions approach cubic order steady 
state solutions exactly. 

Additionally, SPLASH and DASH were applied to the solution of the time 
dependent two group neutron diffusion equations for a critical system. Excellent 
agreement with the steady state critical eigenvalue results were obtained for the 
neutron flux and current. 

Comparison with DASH FD diffusion solutions, using the exponential matrix 
method, indicates that SPLASH can evaluate the solution to time dependent mul- 
ticomponent diffusion decay problems more accurately with less than one-half as 
many coupled equations. This implies roughly an order of magnitude com- 
putational speed improvement is possible with SPLASH for the same accuracy. 
Vectorization is implemented readily. 

If the conservation Lagrange multiplier constraints are not used (as is typical in 
some codes), the non-conserving aspects of the solution are apparent. The volume 
integral, j dC/dz dV, when calculated by substituting the solution into the diffusion 
equation, may be predicted quite erroneously. As the non-conservation solution 
approaches steady state (when 1 dC/dtdV should approach zero), the predicted 
[ dC/dt dV remains large. Computation at later times yields the same steady state 
concentration solution, but, again, an erroneous predicted j dC/dz dV value. 
Although the non-conservation solution method yields more accurate conservation 
predictions with a considerably increased number of nodes per region, this practice 
is uneconomical. 

The conservation solution, on the other hand, correctly and accurately 
approaches the steady state with a minimal number of nodes. Additionally, dC/dt 
approaches zero and is in good agreement with the analytic solution at all times. It 
seems physically and computationally important that the numerical solutions to a 
problem satisfy the prescribed differential equations, the boundary conditions, and 
particle conservation! 

APPENDIX: MATRIX ELEMENTS FOR THE VARIATIONAL METHOD 

We define the integral 

where k(c) = 1, 27r, and 4n for c = 0, 1, and 2 in slab, cylindrical, and spherical 
geometry, respectively. 
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The matrix elements for the variational diffusion problem, Eq. 13 in the text, are 

CTl= 

-[A]= 

elf,0 . . . 

fTe2f2 0 . . 
0 f2T e3 f3 0 . 
. . . . 

3 

. . . . 

. 0 f,'-, en f, 

. 0 0 fnT en+, 

h, Cl 0 ' . . 
a, 6, c2 0 . ’ 

0 a2 b3 c3 0 . 
. . . 

. . . 

. . 0 anpI 6, c, 

. . 0 0 an L 

> 

I 

and the elements ak, bk, ck, ek, and fk are 3Mx 3M matrices. 
The individual matrix elements and their forms are summarized below for M= 1, 

where we have assumed [D] = D,,,d,,, : 

ej,ll =Ki- l<Si(P)>i- I+ Ki(si(l -P)>i, 

ej,12 = e1,21 - -(~-,CD(ri~)I-‘)(so(p)s,(p))i-l 
- (ellDtri+ )l-‘)(sO(l -P) sI(l -P)>i, 

ej,22=(K?-,CD(r,~)I-2)(s:(p))i~1 +(K!CWri+)1-2)(~f(1 -P)),, 

ei.31 = ei.13 =Kj(s,(l -PI >i, 

ei.32 = er,23 = -(K’,CD(r,+)l~‘)(s,(l-p))i, 
ei.33 = 0, 

fi,ll=Ki(so(l-p)s,(p))i, 

fi,12=(~CD(ri-~1~)1-~)(So(1 -P)S,(P))i, 

fi.13 = 0, 

h,21= -(KfCWri+ )I-‘)<~,(1 -P) S,(p)),, 

.L,22 = - WXW,, 1 Nri+ I ~ )I ~ ‘)(S,(l -P) sl(p)>i, 

f;:23 = O, 
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fi.31 = Ki(sO(P) >i, 
fr,32=(~CD(ri+,-)l-‘)(s,(p))i, 
x,33 = 03 
bi,ll = <(lIDi- I(P)llKi- 1) ‘A’(P) + Ki- ILLi- *(P)] si(P)>iL 1 

+ ((CDi(P)lIKi) ‘h2(l -P) +KiCLi(P)I 4(l -P)>iT 
bi,lZ = b,,,, = ( CD(rip )I -‘(lIDi- I(P)1 sb(P) s;(P) 

+ Kf- IELi- I(P)1 sO(P) sl(P))>i- I 
- ( [D(ri+)l-l(CDi(P)l $b(l -P) s;(l -P) 
+ gCLi(P)l sO(l -P) sI(l -P))>i 

bi,13 = bi,31 9 
bi,*2= CD(ri-)l-2 Ki-I(CDj-~(P)l S;2(p)+Kf-,[Li-,(p)] sf(p)])i-, 

+ CD(ri+)l-2 Ki(CDi(P)ls;2(1 -P)+KfCLi(P)l Sf(l-P))j, 
bi.23 = bi.32 > 
bi.3, = Ki( CLAP)1 SO(~ -P) >iv 
bi,32= -‘*-~CD(ri+)l-‘(CLi(p)s,(l-p))i, 
bi,33 = 0, 
CL11 = - ((CDi(P)lIKi) sb(1 -P) sb(P) -Kj[Li(p)] S,(l -p) sO(p))i3 
ci,12 =-CD(ri+~-)1~1(CD~(~)lsb(1-~)s~(P)-Kf[Li(~)ls~(1-p)~~(p))i, 
ci.13 = 0, 

Ci.21 = CD(ri+ )I -‘< CD,(P)1 d(l -P) s;(p)-e[Li(p)] s,(l -p) So(p))i, 
Ci.22 = CD(ri+ 1 D(ri+ ,- )I p’(KiCDi(P)l &(I -P) S;(P) 

- $CLi(P)l sI(l -P) sl(P)>i, 

ci,23 = 0, 

ci,I = Ki( ELi( sCI(P))i7 

ci,32 =Ai*,,+~CD(ri+,~)l-‘(CLi(p)lsl(p))i, 
ci,33 = 0, 

and 
aijk = ci- l,kj, 1 <.i, k<3, 

where A* = AJk(c) and F(p) = df(p)/dp. The corresponding expressions for ~4 > 1 
are straightforward. 
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